• tal
    link
    fedilink
    English
    arrow-up
    13
    ·
    edit-2
    1 year ago

    Also, a Markdown table rendition:

    eu-contribution-per-capita-markdown.r

    if (!require("pacman")) install.packages("pacman")
    pacman::p_load(
                countrycode,
                dplyr,
                r2country,
                simplermarkdown
            )
    
    abs <- read.csv("statista-netcontrib.csv",header = TRUE)
    abs2 <- cbind(abs,name = countrycode(abs$country,"iso2c","country.name")) 
    
    df <- inner_join(country_names, abs2)
    df2 <- inner_join(country_population, df)
    df2$percap <- df2$netcontrib/df2$population2023*1000000
    
    df3 <- arrange(df2,-percap)
    
    md_table(df3)
    

    name percap
    Netherlands 386.91124
    Germany 302.86855
    Denmark 297.09908
    Sweden 267.98643
    Finland 199.90810
    France 181.71677
    Austria 168.68113
    Ireland 136.52768
    Italy 56.76638
    Malta -26.94577
    Spain -40.25217
    Slovenia -182.27546
    Cyprus -187.34343
    Romania -214.99549
    Belgium -250.73894
    Slovakia -257.60767
    Bulgaria -267.84703
    Portugal -299.21568
    Lithuania -300.05251
    Poland -315.86485
    Greece -408.10926
    Hungary -438.25808
    Croatia -449.01298
    Estonia -533.72029
    Latvia -819.79399
    Luxembourg -3056.85909
    • Whelks_chance@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      1 year ago

      This is very clever. Is Lemmy actually running the code to achieve this, or did you paste it just so other people can replicate the process?

      • tal
        link
        fedilink
        English
        arrow-up
        5
        ·
        1 year ago

        Nah, I just pasted it so that other people can reproduce.