How, exactly, does that solve anything? It’s not like we can add some kind of magic automatic residential cutoff system (that would just make it worse) and residential distribution is already the problem! Residential solar is awesome (tho home batteries are largely elon propaganda…) but they only contribute to the above issue, not solve it. There are ways of addressing it, but they’re complicated and unglamorous.
It’s not like we can add some kind of magic automatic residential cutoff system
Of course we can. They’re called Microgrid Interconnection Devices (MIDs).
that would just make it worse
Microgrids that can disconnect from the utility at appropriate times may in fact make it better. If homeowners responded to utility alerts of high demand and opted to disconnect from the grid during those times while still having power, that would just make grid operators and home owners happier.
residential distribution is already the problem!
Microgrids are the solution!
tho home batteries are largely elon propaganda…
While residential BESSs are largely Tesla based, they are absolutely key in the energy transition from fossil- to renewables-based power sources.
they only contribute to the above issue, not solve it.
How?
There are ways of addressing it, but they’re complicated and unglamorous.
Because home batteries, while provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes), is a vastly inferior solution to the implementation of even local grid scale solutions. Also because there is essentially 0 infrastructure designed to handle said batteries, they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here) and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste. They could be useful potentially, but as it stands, it’s really bad right now.
provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes)
A generator can provide backup power for unlimited time if fuel is available, but it is highest cost power in the world. Batteries can be charged/discharged every day, displacing dirty energy. A generator is either rarely used or eco destructive.
If you assume what’s being compared is the platonic ideal of both technologies then you’re largely correct, but removing them from the context of the real world (where: high density battery chemistries still wear out quickly, biodiesel is common, the supply chain is a major contributor of greenhouse emissions, the need for power backups is infrequent, and where grid power is still in large part supplied by fossil fuels) isn’t very useful. Local-grid scale battery storage is the best solution we have for direct energy storage, and it’s very much maturing rapidly, but home units are still restricted in the above and countless (because I am too lazy to count them) additional ways. Ignoring those issues doesn’t work; implementation doesn’t particularly care about theory.
LFP batteries are the right home solution (Sodium Ion soon enough). US is tariff/capacity/policy restricted. Utility monopoly restricted if you want to export to grid, or use your EV as V2G. Utilities are also protected from off grid choices, and are changing their pricing with extortive fixed portions of utility bills. Biodiesel is not a sustainable (worse than ethanol if produced intentionally) solution.
You need to look up how much grid storage lithium batteries are being built. It’s exponential growth. Faster than solar.
The reason it’s worthwhile is because solar makes energy with 0 or near 0 price to the owner in certain places, if they store that and use it for later they save money. There are cost calculators out there and for certain markets they make sense.
Of course Tesla pushes it they got a product people want and it makes the consumer and Tesla money. Win win. That’s business, nothing shady about that.
Yes batteries are better on the grid but that’s for exactly the same reasons why solar is better on the grid.
though the generator is going to be far more eco friendly than the batteries over their respective lifetimes
That’s just not true.
vastly inferior solution to the implementation of even local grid scale solutions.
Same as solar. But you seem to be pro rooftop solar but not home grids and no explanation why.
Also because there is essentially 0 infrastructure designed to handle said batteries,
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise production and demand more into the house.
they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here)
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
I don’t under a CEO pushes a good product that helps the grid and helps consumers make money. Your bias against Elon is just limiting your world view.
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense. Lithium ion batteries are recyclable. Yes batteries are Bette Ron the grid but getting them connected is hard. Same solar, waste on roofs but thats how it goes. The arguments are the same.
They could be useful potentially, but as it stands, it’s really bad right now.
Neat, a point by point breakdown. Love those. In no way are they fingernails to the blackboard of internet discussion.
Lets just get this over with:
That’s just not true.
Okay it’s pretty clear you’re very unfamiliar with this subject.
and no explanation why
The entire rest of my comment explains why. That’s what the whole comment is about. “Why” is the entire thesis of the comment. It is the comments entire raison d’être. In summary: the inefficiencies inherent to distributed implementation, the lack of service infrastructure, the short lifespans of the high-density battery chemistries needed in residential installs, etc.
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
I don’t really care, though. It’s got nothing to do with the points I was making, which is why I didn’t address it. It’s largely irrelevant.
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise [sic] production and demand more into the house.
Okay, no. This is not how residential demand or load balancing or power infrastructure works. There’s components you’re assuming exist that would have to run on magic to be safe (some kind of automatic interlock cut-in), and even those would absolutely devastate the grid by constantly adding and removing whole residential loads at random.
Your bias against Elon is just limiting your world view.
Oh buddy… buddy no. Come on.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense.
My gaster is well and truly flabbered. I honestly don’t know what to say in response to this.
Phew, that sure was a lot wasn’t it? Please please please take the time you’d use to write a response to this comment and go watch some electroboom videos instead, he’s very entertaining and a great educator of the concepts at play here.
Neat, a point by point breakdown. Love those. In no way are they fingernails to the blackboard of internet discussion
Well unfortunately your mental capacity seems to make it a necessity.
That’s what the whole comment is about. “Why” is the entire thesis of the comment. It is the comments entire raison d’être. In summary: the inefficiencies inherent to distributed implementation, the lack of service infrastructure, the short lifespans of the high-density battery chemistries needed in residential installs, etc.
The question is about why you think solar is good for home but not batteries. That hasn’t been explained. You used grid issues as a reasoning and inefficiencies. Which is exactly the same as as solar and that was the whole reason for the question in the first place. I’m sorry you’re not getting that, I made the fatal assumption you had some intelligence behind you but I’m being proved wrong. You can’t even understand simple conversations. The only actual point you made is wear on batteries but that only matters for a financial and environmental factors but your point falls flat on it’s face with both. I guess you did also say batteries are better on the grid than at home but that was accepted before the conversation started and the same with solar (at least for me and hence the conversation). The financial business reasonings is just mind blowing, businesses and consumers like to make money and they both do. Financially, batteries aren’t some Elon conspiracy theory, that’s just business. That seems too much for you. But solar has the same ideas about paybacks so I do struggle to see how you think one works and the other doesn’t. Ah well I guess an answer to that isn’t coming.
I don’t really care, though. It’s got nothing to do with the points I was making, which is why I didn’t address it. It’s largely irrelevant.
Its not though because you think a businessman isn’t doing businessman things. That’s how its directly relevant to what you said.
internalise [sic]
Hahahaha this is the icing on the cake. Your arrogance matches your stupidity. Look if you’re going to try correct someone at least spend 10 seconds on google, but obviously that’s too much for you. That’s how that’s words spelt. Hahaha that says it all about your conversation doesn’t it? That should be the end of it, but at least I’ll finish this comment off.
Okay, no. This is not how residential demand or load balancing or power infrastructure works. There’s components you’re assuming exist that would have to run on magic to be safe (some kind of automatic interlock cut-in), and even those would absolutely devastate the grid by constantly adding and removing whole residential loads at random.
I don’t know what to say. When solar is used in the house it doesn’t go down the lines. There is less demand on the wires that’s just fact.
I’m sorry. I known you want to come across like you know stuff but I just started by asking you about a simple point and you’ve come across really badly both in terms of intelligence and in delivery. Good luck with both in the future.
After installation, a home owner has free electricity? I’m not trying to solve the issues for the power grid people, they have teams of people for that.
Spain and Portugal had almost complete blackouts today. You know who wouldn’t have had blackouts? The people with their own solar panels and windmills.
I acknowledge that there’s no real way to communicate sincerity online, but I’m gonna go ahead and promise I’m not trying to be a dick here when saying this:
a home owner has free electricity
I think you’re bonking up on the Dunning Kruger limit here, because that’s absolutely not how it works. Not only are the vast majority of homes not candidates for useful solar installs (you can pay someone to do it, but holy cow nearly every residential solar installer is a scam looking at you, Lumio International (how’s that RICO case going?)), but solar for home-use power generation is very much not the norm for a whole host of reasons (dead linemen one of the biggest ones) and the safety considerations for implementing it generally make it an onerous enough task to manage that it’s appeal is restricted largely to special interest users (homesteaders, preppers, S&R, power system enthusiasts, van life, etc ). There are ways this could be mitigated, but it would require a massive grid overhaul and additional constant upkeep beyond what any current grid already requires.
Not only are the vast majority of homes not candidates for useful solar installs
Australia is an edge case for everything solar and I’ll quite happily admit that! Yay Australia, well done. That said I’d be very willing to bet that the majority of those are not-above-50%-ideal installs (don’t take that bet, I’m cheating)
Hardly “only special interest groups”
Sorry, you’ve misunderstood, I was talking about direct home power generation being special interest, not residential solar in general. Aussies don’t have a higher rate for direct power generation than anywhere else because grids are, by and large, all suffering from the same fundamental design issues. I’m not at all attempting to argue that solar installs in general are special interest, and especially with the incredibly well thought out incentives the aus gvmt has been offering for both new construction and residential conversion/installation. 100% best handling of it in the world right now.
How, exactly, does that solve anything? It’s not like we can add some kind of magic automatic residential cutoff system (that would just make it worse) and residential distribution is already the problem! Residential solar is awesome (tho home batteries are largely elon propaganda…) but they only contribute to the above issue, not solve it. There are ways of addressing it, but they’re complicated and unglamorous.
Of course we can. They’re called Microgrid Interconnection Devices (MIDs).
Microgrids that can disconnect from the utility at appropriate times may in fact make it better. If homeowners responded to utility alerts of high demand and opted to disconnect from the grid during those times while still having power, that would just make grid operators and home owners happier.
Microgrids are the solution!
While residential BESSs are largely Tesla based, they are absolutely key in the energy transition from fossil- to renewables-based power sources.
How?
Which ways?
I don’t see why home batteries are propaganda. Those prices are plummeting and they have decent payback times in some markets.
The reasons for getting solar is the same reasons for getting batteries.
Because home batteries, while provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes), is a vastly inferior solution to the implementation of even local grid scale solutions. Also because there is essentially 0 infrastructure designed to handle said batteries, they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here) and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste. They could be useful potentially, but as it stands, it’s really bad right now.
A generator can provide backup power for unlimited time if fuel is available, but it is highest cost power in the world. Batteries can be charged/discharged every day, displacing dirty energy. A generator is either rarely used or eco destructive.
If you assume what’s being compared is the platonic ideal of both technologies then you’re largely correct, but removing them from the context of the real world (where: high density battery chemistries still wear out quickly, biodiesel is common, the supply chain is a major contributor of greenhouse emissions, the need for power backups is infrequent, and where grid power is still in large part supplied by fossil fuels) isn’t very useful. Local-grid scale battery storage is the best solution we have for direct energy storage, and it’s very much maturing rapidly, but home units are still restricted in the above and countless
(because I am too lazy to count them)additional ways. Ignoring those issues doesn’t work; implementation doesn’t particularly care about theory.LFP batteries are the right home solution (Sodium Ion soon enough). US is tariff/capacity/policy restricted. Utility monopoly restricted if you want to export to grid, or use your EV as V2G. Utilities are also protected from off grid choices, and are changing their pricing with extortive fixed portions of utility bills. Biodiesel is not a sustainable (worse than ethanol if produced intentionally) solution.
You need to look up how much grid storage lithium batteries are being built. It’s exponential growth. Faster than solar.
The reason it’s worthwhile is because solar makes energy with 0 or near 0 price to the owner in certain places, if they store that and use it for later they save money. There are cost calculators out there and for certain markets they make sense.
Of course Tesla pushes it they got a product people want and it makes the consumer and Tesla money. Win win. That’s business, nothing shady about that.
Yes batteries are better on the grid but that’s for exactly the same reasons why solar is better on the grid.
O…kay but that doesn’t address anything I actually said.
That’s just not true.
Same as solar. But you seem to be pro rooftop solar but not home grids and no explanation why.
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise production and demand more into the house.
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
I don’t under a CEO pushes a good product that helps the grid and helps consumers make money. Your bias against Elon is just limiting your world view.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense. Lithium ion batteries are recyclable. Yes batteries are Bette Ron the grid but getting them connected is hard. Same solar, waste on roofs but thats how it goes. The arguments are the same.
They are useful. They aren’t bad.
Neat, a point by point breakdown. Love those. In no way are they fingernails to the blackboard of internet discussion.
Lets just get this over with:
Okay it’s pretty clear you’re very unfamiliar with this subject.
The entire rest of my comment explains why. That’s what the whole comment is about. “Why” is the entire thesis of the comment. It is the comments entire raison d’être. In summary: the inefficiencies inherent to distributed implementation, the lack of service infrastructure, the short lifespans of the high-density battery chemistries needed in residential installs, etc.
I don’t really care, though. It’s got nothing to do with the points I was making, which is why I didn’t address it. It’s largely irrelevant.
Okay, no. This is not how residential demand or load balancing or power infrastructure works. There’s components you’re assuming exist that would have to run on magic to be safe (some kind of automatic interlock cut-in), and even those would absolutely devastate the grid by constantly adding and removing whole residential loads at random.
Oh buddy… buddy no. Come on.
My gaster is well and truly flabbered. I honestly don’t know what to say in response to this.
Phew, that sure was a lot wasn’t it? Please please please take the time you’d use to write a response to this comment and go watch some electroboom videos instead, he’s very entertaining and a great educator of the concepts at play here.
Well unfortunately your mental capacity seems to make it a necessity.
The question is about why you think solar is good for home but not batteries. That hasn’t been explained. You used grid issues as a reasoning and inefficiencies. Which is exactly the same as as solar and that was the whole reason for the question in the first place. I’m sorry you’re not getting that, I made the fatal assumption you had some intelligence behind you but I’m being proved wrong. You can’t even understand simple conversations. The only actual point you made is wear on batteries but that only matters for a financial and environmental factors but your point falls flat on it’s face with both. I guess you did also say batteries are better on the grid than at home but that was accepted before the conversation started and the same with solar (at least for me and hence the conversation). The financial business reasonings is just mind blowing, businesses and consumers like to make money and they both do. Financially, batteries aren’t some Elon conspiracy theory, that’s just business. That seems too much for you. But solar has the same ideas about paybacks so I do struggle to see how you think one works and the other doesn’t. Ah well I guess an answer to that isn’t coming.
Its not though because you think a businessman isn’t doing businessman things. That’s how its directly relevant to what you said.
Hahahaha this is the icing on the cake. Your arrogance matches your stupidity. Look if you’re going to try correct someone at least spend 10 seconds on google, but obviously that’s too much for you. That’s how that’s words spelt. Hahaha that says it all about your conversation doesn’t it? That should be the end of it, but at least I’ll finish this comment off.
I don’t know what to say. When solar is used in the house it doesn’t go down the lines. There is less demand on the wires that’s just fact.
I’m sorry. I known you want to come across like you know stuff but I just started by asking you about a simple point and you’ve come across really badly both in terms of intelligence and in delivery. Good luck with both in the future.
After installation, a home owner has free electricity? I’m not trying to solve the issues for the power grid people, they have teams of people for that.
Spain and Portugal had almost complete blackouts today. You know who wouldn’t have had blackouts? The people with their own solar panels and windmills.
I acknowledge that there’s no real way to communicate sincerity online, but I’m gonna go ahead and promise I’m not trying to be a dick here when saying this:
I think you’re bonking up on the Dunning Kruger limit here, because that’s absolutely not how it works. Not only are the vast majority of homes not candidates for useful solar installs (you can pay someone to do it, but holy cow nearly every residential solar installer is a scam looking at you, Lumio International (how’s that RICO case going?)), but solar for home-use power generation is very much not the norm for a whole host of reasons (dead linemen one of the biggest ones) and the safety considerations for implementing it generally make it an onerous enough task to manage that it’s appeal is restricted largely to special interest users (homesteaders, preppers, S&R, power system enthusiasts, van life, etc ). There are ways this could be mitigated, but it would require a massive grid overhaul and additional constant upkeep beyond what any current grid already requires.
Here in Australia 37% of households have rooftop solar. Hardly “only special interest groups”.
Australia is an edge case for everything solar and I’ll quite happily admit that! Yay Australia, well done. That said I’d be very willing to bet that the majority of those are not-above-50%-ideal installs (don’t take that bet, I’m cheating)
Sorry, you’ve misunderstood, I was talking about direct home power generation being special interest, not residential solar in general. Aussies don’t have a higher rate for direct power generation than anywhere else because grids are, by and large, all suffering from the same fundamental design issues. I’m not at all attempting to argue that solar installs in general are special interest, and especially with the incredibly well thought out incentives the aus gvmt has been offering for both new construction and residential conversion/installation. 100% best handling of it in the world right now.