Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.

  • Yggstyle@lemmy.world
    link
    fedilink
    English
    arrow-up
    28
    arrow-down
    3
    ·
    edit-2
    14 hours ago

    So uh. I guess those coal and natural gas power plants would fare better in a fire. Something seems wrong there but OP clearly wouldn’t possibly post something on the Internet that was utterly detached from reality.

    Energy storage is just that. Fire is frequently quite good at releasing said energy.

    Lithium? poof.

    Oil? yup.

    Nat gas? mmhmm.

    wood? yup.

    Coal? dang.

    Guess all we got left is water - I’m sure that doesn’t have any specific regional requirements…

    So tell us champ: what energy storage you got all figured out from that armchair?

      • Yggstyle@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        12 hours ago

        Was gonna list it but I figured our energy-tzar OP would just complain about radioactive minerals being like batteries with more steps.

      • Yggstyle@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        ·
        3 hours ago

        I imagine you, like many, just don’t understand the insane engineering feat that is an electrical grid. Everything is realtime - Every time someone’s AC kicks on the grid must adapt and provide more power immediately. Power storage is a godsend to this process and in terms of relative age … is very new. With regard to power storage - there are very few ways to hold it that don’t run some risk of fire or other calamitous failure mode. That includes water - but I was being coy when making my statement implying it wouldn’t burn.

        To your comment: you could use salt/sea/undrinkable water for energy storage but it comes with regional requirements (elevation change typically) in addition to the water. It’s not one size fits all and definitely doesn’t work in many regions.

        Regarding your two options which you offered to create potable water (not to store energy:) Both are wildly inefficient and have one or more major drawbacks to them. Topically - one of these drawbacks is their massive energy requirement. So you provided a way to burn energy faster - not store it ;)

        • CrimeDad@lemmy.crimedad.workOP
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          1 hour ago

          If we build out our GHG-free power capacity beyond our electricity demand, efficiency isn’t an issue. We need fresh water. We need hydrogen and oxygen. I’m sure there are other convenient things to produce whenever electricity demand falls off. These energy storage and reselling schemes are just destroying value.

          • Yggstyle@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            57 minutes ago

            We have sufficient generation. It’s a question of cleanliness, efficiency, and consistency. Consistency comes with storage and enables cleaner methods, while inconsistent, to be used.

            Using your example: what need do we have for food storage? We have grain right now - and we’re growing more! Who needs water storage - we have wells!

            Hydrogen and oxygen? Yeah we have that. What technology, currently available, are you suggesting we all switch over to, again? While I’m at it: last I checked stored hydrogen and oxygen have a tendency to uh… burn… and very “energetically.”

            You seem fond of the tin foil - you are apparently worried about “big lithium” or some such… wait until you hear about “big energy.”

            If you are genuinely posting and not acting in bad faith I imagine you need to broaden your view a bit.