For about half a year I stuck with using 7B models and got a strong 4 bit quantisation on them, because I had very bad experiences with an old qwen 0.5B model.

But recently I tried running a smaller model like llama3.2 3B with 8bit quant and qwen2.5-1.5B-coder on full 16bit floating point quants, and those performed super good aswell on my 6GB VRAM gpu (gtx1060).

So now I am wondering: Should I pull strong quants of big models, or low quants/raw 16bit fp versions of smaller models?

What are your experiences with strong quants? I saw a video by that technovangelist guy on youtube and he said that sometimes even 2bit quants can be perfectly fine.

UPDATE: Woah I just tried llama3.1 8B Q4 on ollama again, and what a WORLD of difference to a llama3.2 3B 16fp!

The difference is super massive. The 3B and 1B llama3.2 models seem to be mostly good at summarizing text and maybe generating some JSON based on previous input. But the bigger 3.1 8B model can actually be used in a chat environment! It has a good response length (about 3 lines per message) and it doesn’t stretch out its answer. It seems like a really good model and I will now use it for more complex tasks.

    • Smorty [she/her]@lemmy.blahaj.zoneOP
      link
      fedilink
      English
      arrow-up
      2
      ·
      3 months ago

      Another user @SGforce@lemmy.ca commented about there being a way to split it between GPU and CPU. Are you talking about this nvidia only and windows only thingy, which only works with the proprietary driver? If so, I’m really not gonna use that…

      Have you tried some of the abliterated models? They work really nicely even for the spiciest of topics. They literally can’t refuse your instruction, so they just go ahead and do what you want. But maybe even these models are too narrow for your specific application…