Well it’s not standardized yet to my knowledge, but for example if we used something like the USB-PD protocol it could be a baseline 5 volts, with device negotiated step up to 9, 12, 15, 24, 28, 36, and 48. Higher voltage isn’t out of the question; EV systems safely run closer to 400 and a number of home batteries range up to 600, but I’d be iffy on the idea of the average contractor putting that voltage in the walls of the average home.
It’s true the copper for longer, higher current, or lower voltage DC runs could get very expensive, but even without HV for distance, thoughtful distribution of storage to expected points of delivery would limit the number of heavy lines needed for current spikes.
Long short, I’m not talking about switching entirely from AC, or pumping DC power through existing residential circuits. I’m talking about adding a secondary system that’s a more integrated version of the ubiquitous portable power station / “solar generator” batteries. It would be a home modernization upgrade, similar to running Ethernet to PoE enabled jacks in each room, installing a fancy intercom system, or what have you.
I dig that solution for sure. I know I’ve seen others in the past only suggest the low voltage DC piece and not have the solution to run 100 foot or more in the wall - but essentially you could load up highly efficient power transformation as well as built in batteries for each device to request the power it needs.
Only real problem next would be the added cost. Not only for the edge devices (which may save money) but for the home transformation itself. 110vac outlets are around a buck or so; pretty hard to beat. My guess is that this would be something better served with early adopters and then attrition.
I would prefer 48 V, because it is as high as possible while still being safe and leaving some margin (note that 60 V DC is considered maximum safe voltage).
Note that 48 V is 80% of 60 V. So the margin is 20%.
I am against negotiating the voltage dynamically, because I fear that it makes every device drastically more complex, and therefore drastically more expensive. (and drastically more prone to errors)
Well it’s not standardized yet to my knowledge, but for example if we used something like the USB-PD protocol it could be a baseline 5 volts, with device negotiated step up to 9, 12, 15, 24, 28, 36, and 48. Higher voltage isn’t out of the question; EV systems safely run closer to 400 and a number of home batteries range up to 600, but I’d be iffy on the idea of the average contractor putting that voltage in the walls of the average home.
It’s true the copper for longer, higher current, or lower voltage DC runs could get very expensive, but even without HV for distance, thoughtful distribution of storage to expected points of delivery would limit the number of heavy lines needed for current spikes.
Long short, I’m not talking about switching entirely from AC, or pumping DC power through existing residential circuits. I’m talking about adding a secondary system that’s a more integrated version of the ubiquitous portable power station / “solar generator” batteries. It would be a home modernization upgrade, similar to running Ethernet to PoE enabled jacks in each room, installing a fancy intercom system, or what have you.
I dig that solution for sure. I know I’ve seen others in the past only suggest the low voltage DC piece and not have the solution to run 100 foot or more in the wall - but essentially you could load up highly efficient power transformation as well as built in batteries for each device to request the power it needs.
Only real problem next would be the added cost. Not only for the edge devices (which may save money) but for the home transformation itself. 110vac outlets are around a buck or so; pretty hard to beat. My guess is that this would be something better served with early adopters and then attrition.
deleted by creator
I would prefer 48 V, because it is as high as possible while still being safe and leaving some margin (note that 60 V DC is considered maximum safe voltage).
Note that 48 V is 80% of 60 V. So the margin is 20%.
I am against negotiating the voltage dynamically, because I fear that it makes every device drastically more complex, and therefore drastically more expensive. (and drastically more prone to errors)